
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=temu20

Emu - Austral Ornithology

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/temu20

Traffic noise alters individual social connectivity,
but not space-use, of Red-backed Fairywrens

Carly E. Hawkins , Isabel T. Ritrovato & John P. Swaddle

To cite this article: Carly E. Hawkins , Isabel T. Ritrovato & John P. Swaddle (2020): Traffic noise
alters individual social connectivity, but not space-use, of Red-backed Fairywrens, Emu - Austral
Ornithology, DOI: 10.1080/01584197.2020.1830706

To link to this article:  https://doi.org/10.1080/01584197.2020.1830706

View supplementary material 

Published online: 25 Oct 2020.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=temu20
https://www.tandfonline.com/loi/temu20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01584197.2020.1830706
https://doi.org/10.1080/01584197.2020.1830706
https://www.tandfonline.com/doi/suppl/10.1080/01584197.2020.1830706
https://www.tandfonline.com/doi/suppl/10.1080/01584197.2020.1830706
https://www.tandfonline.com/action/authorSubmission?journalCode=temu20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=temu20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01584197.2020.1830706
https://www.tandfonline.com/doi/mlt/10.1080/01584197.2020.1830706
http://crossmark.crossref.org/dialog/?doi=10.1080/01584197.2020.1830706&domain=pdf&date_stamp=2020-10-25
http://crossmark.crossref.org/dialog/?doi=10.1080/01584197.2020.1830706&domain=pdf&date_stamp=2020-10-25


Traffic noise alters individual social connectivity, but not space-use, of 
Red-backed Fairywrens
Carly E. Hawkins a,b, Isabel T. Ritrovatob and John P. Swaddleb,c

aDepartment of Ecology & Evolutionary Biology, UC Davis, Davis, CA, USA; bDepartment of Biology, William & Mary, Williamsburg, VA, USA; 
cInstitute for Integrative Conservation, William & Mary, Williamsburg, VA, USA

ABSTRACT
The prevalence of human-generated noise is posing novel challenges to birds, by changing 
how they communicate or causing them to disperse away from the source of noise. We sought 
to understand how noise affected space-use and social connectivity in a small passerine bird, 
the Red-backed Fairywren (Malurus melanocephalus). As the displaced birds would likely be 
forced to occupy a smaller area that may already have resident individuals, we predicted that 
noise-affected birds would show increased social connectivity that may include new indivi
duals. To test this, we introduced an experimental point-source of traffic noise to groups of 
fairywrens in an otherwise quiet habitat and compared the change in social connectivity of 
birds in groups exposed to noise to the changes in social connectivity in neighbouring groups 
unaffected by noise. Contrary to our prediction, noise-affected birds had reduced social 
connectivity during experimental noise treatments, as measured by weighted-degree, which 
was driven by a reduction of interactions with birds of neighbouring groups outside the noise 
zone. Additionally, we did not discern a change in space-use in response to our noise treat
ment. Therefore, we suggest that noise reduces the efficacy of signal transmission and detec
tion in this species, resulting in the reduction of social connectivity between groups of this 
otherwise highly social songbird.
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Introduction
Anthropogenic noise is increasingly prevalent in pre
viously unaffected areas of wildlife habitation (Buxton 
et al. 2017). Anthropogenic noise, henceforth referred 
to as ‘noise’, tends to occur at a lower frequency (pitch, 
mostly between 1–2 kHz) and at higher amplitudes 
(loudness) than many naturally occurring sounds 
(Slabbekoorn and Peet 2003; Slabbekoorn and 
Ripmeester 2008). Thus, noise changes the acoustic 
environment and creates novel challenges for wildlife 
in the transmission and accurate reception of acoustic 
signals and cues. Acoustic signals used for attracting 
and retaining mates are often masked by noise 
(Lengagne 2008; Schmidt et al. 2014). This noise- 
related degradation of mating signals can ultimately 
impact aspects of wildlife fitness such as hatching 
success (Kleist et al. 2018), egg production and nest
ling body condition (Injaian et al. 2018) in birds and 
ultimately reproductive success (Halfwerk et al. 2011). 
Many species of wildlife use auditory cues to warn 
against threats of depredation. Therefore, animals 
occupying noisy environments often increase vigi
lance, and subsequently reduce time spent foraging 
(Rabin et al. 2006; Meillere et al. 2015; Mahjoub 
et al. 2015; Ware et al. 2015; Kern and Radford 2016; 
Quinn et al. 2017). Beyond the degradation of acoustic 
signals and cues, noise might also be a generalised 

stressor that imposes physiological costs. For example, 
chronic noise exposure is sometimes associated with 
changes in corticosterone stress hormones (Chloupek 
et al. 2009; Crino et al. 2011; Blickley et al. 2012; Kleist 
et al. 2018) and decrease body weight and food intake 
(Alario et al. 1987).

Birds are particularly susceptible to the costs asso
ciated with environmental noise because they are such 
vocal organisms. Responses of birds to noise include 
(i) adjusting their vocalisations, such as increasing 
number of vocalisations or altering amplitude (loud
ness) and frequency (pitch), presumably to reduce 
acoustic masking or degradation by environmental 
noise (Potvin et al. 2011; Slabbekoorn 2013; 
Derryberry et al. 2016); (ii) adjusting when they voca
lise to avoid acoustic masking or degradation (Fuller 
et al. 2007; Cartwright et al. 2014); (iii) huddling, or 
reducing nearest-neighbour distance to increase vigi
lance efforts (Fernández-Juricic et al. 2005; Owens 
et al. 2012) and perhaps decrease acoustic masking 
or degradation as vocal amplitudes are louder when 
individuals are closer together and (iv) dispersing 
from a noise-affected area entirely (Francis et al. 
2011; Mahjoub et al. 2015; Swaddle et al. 2016).

Disrupting or changing communication and alter
ing group closeness or membership in response to 
noise could likely also influence social behaviour. 
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Additionally, social interactions are often mediated by 
acoustic signalling. For example, acoustic signals can 
reinforce pair-bonds (Swaddle and Page 2007), influ
ence extra-pair courtship (Otter et al. 1999), and aid in 
defence of territories (Amy et al. 2010). Thus, we 
suspect that the degradation of acoustic signals by 
anthropogenic noise might influence social interac
tions of groups of birds.

Habitat disturbance can alter social interactions in 
birds. For example, increasing forest fragmentation for 
mixed-species flocks of birds reduced social connectiv
ity (weighted-degree; number of social partners and 
frequency of interactions with those partners) between 
species (Mokross et al. 2014), flock size and species 
richness (Maldonado-Coelho and Marini 2004). 
Experimentally presented white noise appeared to 
decrease pair bond strength in Zebra Finches 
(Taeniopygia guttata) (Swaddle and Page 2007). 
Additionally, in Red-backed Fairywrens (Malurus mel
anocephalus), fire-disturbed habitat decreased social 
connectivity in groups of birds compared to groups 
residing in undisturbed habitat, possibly due to loss of 
grassland cover (Lantz and Karubian 2017). Likewise, 
noise disturbance seems to increase male-male interac
tions in White-crowned Sparrows (Zonotrichia leu
cophrys) and could therefore lead to more social 
connectivity (Phillips and Derryberry 2018). Though 
not an avian species, anthropogenic noise (specifically 
noise from pile-driving) resulted in reduced group 
cohesion in European seabass (Dicentrarchus labrax) 
shoals, possibly due to the masking of sensory informa
tion (Herbert-Read et al. 2017).

In this study, we sought to understand how experi
mentally introduced traffic noise affects social ties in 
free-living and highly social songbirds, Red-backed 
Fairywrens (Malurus melanocephalus). While some 
species are susceptible to their calls being masked by 
anthropogenic noise due to overlapping frequencies, 
Red-backed Fairywren calls occur between 6–10 kHz 
which does not overlap with typical frequency ranges 
for traffic noise (1–2 kHz) (Slabbekoorn and Peet 
2003; Dowling and Webster 2013; Lowry et al. 2019). 
However, high-frequency songs attenuate faster and 
travel shorter distances, so noise can degrade fairyw
ren songs by decreasing the range of transmission 
through scattering and fluctuations in amplitude 
(Slabbekoorn and Ripmeester 2008; Brumm and 
Naguib 2009). Additionally, noise disrupts the ability 
for birds to process cross-sensory information such as 
visual stimuli by distracting them from other stimuli 
(Halfwerk and van Oers 2020). Based on the previous 
literature described, we hypothesised that anthropo
genic noise would affect social connectivity by degrad
ing acoustic signalling and possibly dispersing birds 
away from the source of noise. We therefore measured 
social connectivity using weighted-degree (Whitehead 
2008; Farine et al. 2015) and measured changes in 

space-use by interpreting utilisation distributions. 
We predicted that noise-affected individuals would 
have increased social connectivity as they would be 
displaced away from the experimental point-source of 
noise, which might bring focal groups into contact 
with other groups of conspecifics. Alternatively, we 
predicted that noise would degrade the calls of birds 
that remain in a noise-affected area, which would limit 
the range of transmission to surrounding birds and 
thus decrease their social connectivity.

Methods

Study system and site

The Red-backed Fairywrens are highly social birds 
that can also serve as an indicator of ecosystem health 
(Rowley and Russell 1997; Skroblin and Murphy 
2013). In the non-breeding season, they form familial 
groups consisting of one social pair and the offspring 
from the previous breeding season (often 4–6 birds 
per group). The species is sexually dimorphic and 
dichromatic. The dominant paired-male of the group 
often moults into their namesake red-black nuptial 
plumage, which consists of black feathers and beak 
with a reddish-orange back plumage, early in the non- 
breeding season. Other males in the group, likely off
spring from that year or 1-year-old offspring from 
a previous breeding season, maintain dull, light 
brown plumage that resembles females’ plumage. 
During the non-breeding season, both ‘bright’ and 
‘dull’ males will often foray to neighbouring females 
and partake in courtship displays. Non-breeding sea
son behaviours impact the outcome of subsequent 
breeding seasons in other species of fairywrens 
(Mulder and Magrath 1994, Joseph Welklin unpub
lished data). Therefore, changes of social structure 
during the non-breeding periods could have longer- 
term implications for mating outcomes.

The focal population was resident and sedentary to 
a field site near Samsonvale, Queensland, Australia (S27° 
16.689ʹ, E152° 51.268ʹ). The field site was located 
between a stretch of road and a large reservoir (Lake 
Samsonvale) and predominantly comprised tall grass
land with patches of eucalypt-dominated wooded areas 
with understory dominated by invasive lantana (Lantana 
camara). During June and July 2016, we assessed ambi
ent noise throughout the field site using a calibrated 
sound pressure metre (Extech Instruments model 
407,730, A-weighting on slow setting, reporting an aver
age of 9 consecutive readings that were 1 min apart) 
using points on transect lines that ran directly west to 
east. We took recordings along transects every 200 m 
and ran transects across the field site 200 m apart from 
north to south (Figure 1). Most of the site did not 
experience human-audible amplitudes of traffic noise 
(< 40 dBA, as our sound metre cannot detect sound 
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pressures below 40 dBA); although there was a thin strip 
of habitat that bordered a road where traffic noise rose 
above 53 dBA SPL (Figure 1). The groups we studied 
resided in areas where traffic noise was apparently inaud
ible, with the four trials located near transect points 7, 10, 
and 29 (Figure 1). Hence, we assumed that traffic noise 
was not an entirely novel stimulus to the focal birds, but 
none of the individuals in this study were chronically 
exposed to traffic noise before our observations began.

Experimental design

We collected social data from familial groups of Red- 
backed Fairywrens during the non-breeding season in 
two consecutive years (23rd June–3 August 2017, n = 3 
groups studied; 28th June–15 July 2018, n = 1 group 
studied) for a total of four trials. We define a unit of 
sample as a pairing of an experimental group and 
a reference group. To collect social data from 
a familial group, we visually followed the focal group 
for 25 min and systematically recorded all interactions 
within the group as well as between members of the 
focal group and those of neighbouring conspecific 
groups (Whitehead 2008). Each experimental group 
of birds comprised four individuals except for one 
group in 2017 that had five. Based on pilot data 
(Samantha Lantz, personal observation), we defined 

an interaction as coordinated group movement within 
a 20-m radius of each other, where they would main
tain a maximum of 20-m distance from each other as 
they moved throughout the site. During the 25-min 
observation session, we noted the approximate centre 
(estimated by eye) of the group every 5 min based on 
the location of the individuals and later returned to the 
habitat to obtain GPS coordinates (Garmin GPS) of 
those noted locations. During all observations we 
remained ~20 m away from the birds and made all 
observations through binoculars to minimise the 
effects of the observer’s presence on individual and 
group behaviour. The same observer recorded all 
social data.

Noise manipulation

We divided our observations of each group of birds 
into two 5-day experimental phases: (i) ‘before’, before 
the noise introduction and (ii) ‘noise’, during noise 
introduction. Each trial (hence, each group of focal 
birds) was 10 days and experienced both of these 
experimental phases. The start of this before-noise 
sequence was staggered by 5 days across groups, so 
that as the first group experienced their noise phase 
the second group started their before phase. While the 
first group experienced noise, the other groups did 

Figure 1. Maps for noise gradient across the field site on weekdays (left) and weekend days (right).
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not. Hence, we used these observations of non-noise 
groups over the same 10-day time period as our noise 
groups (i.e. before and noise) as reference observations 
to account for the progression of time throughout the 
field season independent of noise manipulations and 
to demonstrate that natural background noise does 
not affect social connectivity.

To introduce traffic noise, we placed 
a multidirectional playback system (Audio 
Experience AES0003 full-range 200 W speaker) 
connected to a marine-grade BOSS Audio MR 
1002 amplifier, powered by a 12 V deep-cycle bat
tery that was recharged by an AllPowers 60 W 
SunPower solar panel) in the approximate centre 
of the focal group’s home range and transmitted, in 
a 24-h cycle a continuous loop, an 8-h recording of 
variable highway sounds that varied in maximum 
a m p l i t u d e  ( T a b l e  1 )  ( h t t p s : / / y o u t u . b e /  
AVIDrl4ZNJ4). The speaker emitted an amplitude 
of ~85 dBA SPL 1 m from the source, and about 58 
dBA SPL at 10 m from the source (Table 1). This 
amplitude dropped off to ~50 dBA SPL at about 
22 m from the source and was considered relatively 
indistinguishable from background sounds at this 
latter distance (Table 1). In this way, we introduced 
loud traffic noise at the centre of a group’s home 
range, but this noise dissipated quickly enough that 
there were areas of the original home range that 
did not experience the noise directly. We broad
casted this noise in a 24-hr cycle across the noise 
phase of the experiment. We determined the centre 
of the groups’ home ranges by estimating the cen
tre of Minimum Convex Polygons (MCP) derived 
from plotting GPS points (see above) collected dur
ing the before phase, in Google Earth. We realise 
the limitations of approximating the centre of 
a home range, but the inaccuracies of this metho
dology should not bias our data towards supporting 
or rejecting hypotheses.

Social network metrics

We used weighted social networks rather than binary 
networks, to account for frequency of interactions 
between individuals. We constructed association 

matrices between every combination of two birds 
using the simple association index (SAI): x

xþyaþybþyab 
(Cairns and Schwager 1987; Whitehead 2008), in 
which x is the number of observations individuals 
A and B were observed together, ya is when only 
individual A was observed, yb is when only individual 
B was observed, and yab is when individuals A and 
B were observed separately. This generated a weighted 
value from 0 to 1 which is the proportion of observa
tions where the two subjects were observed together 
out of the total observations in which either bird was 
observed, this value then served as the edge between 
nodes (focal birds) in the network. We calculated 
weighted-degree as the sum of the edge weights con
nected to an individual node to determine social con
nectivity. Node-level metrics, such as weighted- 
degree, are more robust than network-level metrics 
when studying a limited number of discrete groups 
(Farine et al. 2015). Using a custom Python script, we 
converted raw interaction data to a matrix of associa
tion indices (Python Core Team 2015). We processed 
these matrices using the ‘igraph’ package in R (Csárdi 
and Nepusz 2006), generating weighted-degree for 
each individual bird throughout the two phases of 
the study (i.e. before and noise). As individuals vary 
in their social connectivity, we calculated the within- 
individual change in weighted-degree between phases 
for each bird (∆WD: noise minus before) so that each 
bird served as its own reference point.

Estimates of space-use

We uploaded the GPS locations of the approximate 
centre of each focal group, at each observation time in 
each phase of the experiment and used ArcMap to 
generate utilisation distributions (UDs). UD values 
are a kernel-based method that create a three- 
dimensional relative frequency distribution of the 
locations used by the birds over time (Worton 1989), 
in order to quantify space-use of each familial group at 
each phase during the study. To quantify the change in 
space-use with the onset of sound, we summed UD 
values within the ‘noise zone’, which we defined as 
a 20-m diameter circle surrounding the speaker, 
before and during noise playback. As total distribution 
of UD sums to 1, summing the UDs in a particular 
area estimate the probability of space-use in that area. 
Therefore, the sum of overlap of UD’s in the noise area 
tells us the probability of birds spending time in the 
space most affected by our speaker.

Statistical analyses

To examine how the introduction of traffic noise 
influenced social ties in individual birds, we calculated 
the change in weighted-degree from before to noise. 
We used a linear model using the afex package in 

Table 1. Average sound pressure readings (dBA SPL) surround
ing the placed speaker while speaker is ‘on’ (experimental 
traffic noise) and ‘off’ (ambient noise).

Distance 
(m)

Speaker on 
(dBA SPL)

Speaker off 
(dBA SPL)

0–3 85.3 45.5
4–6 72.5 45.8
7–9 62.9 45.6
10–12 58.8 45.7
13–15 55.1 46.4
16–18 52.5 45.6
19–21 50.7 46.0
22–24 48.8 46.4
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R (Singmann et al. 2020) to determine the average 
change in weighted-degree between experimental 
focal birds and reference birds (reference birds 
belonged to the groups that were not presented with 
experimental noise in that trial). The linear model 
included change in weighted-degree as the response 
variable (∆WD: noise minus before) with treatment 
(experimental or reference) and Trial (1, 2, 3 or 4) as 
predictor variables and group ID as a random factor. 
We included Trial as a predictor variable in case the 
time period in which a trial took place influenced 
weighted-degree of birds, as there was a chance that 
social connectivity could change as the field season 
progressed. For our space-use data, we ran a paired 
t-test to compare the probability of finding the experi
mental group of birds in the noise-affected area (UD) 
before and during noise introduction for each of the 
four trials.

Results

Weighted-degree, which is a metric of individual 
social connectivity, decreased notably during 
noise treatments in all four groups of experimen
tal birds (n = 17 birds) compared with average 
change in weighted-degree of reference birds 
(n = 20 birds), which remained stable during the 

same experimental phase (Table 2; Figure 2). The 
sample size for experimental and reference birds 
differed as two birds dispersed prior to their 
group being experimentally manipulated and one 
reference group was not manipulated due to 
equipment failure. It is possible that the decrease 
in individual social connectivity (weighted-degree) 
was driven by between-group interactions, inter
actions between birds of different familial groups, 
as well as within-group interactions, interactions 
between only members of the same familial group 
(Supplemental Material Figure S1). Hence, we re- 
ran the same analyses using weighted-degree data 
that were generated solely from within-group 
interactions (Table 2; Figure 2) and found the 
noise-associated decrease in weighted-degree did 
not occur when analysing within-group interac
tions alone, despite an apparent downward trend 
(n = 37, P = 0.086). However, when including 
only between-group interactions, weighted-degree 
decreased in association with the noise treatment 
(n = 4, P < 0.01, Table 2). Therefore, the presen
tation of traffic noise decreases between-group 
social connectivity by limiting the extent of inter
actions among groups of fairywrens but does not 
strongly affect within-group cohesion. Overall, 
individual birds have fewer social ties, as mea
sured by weighted-degree, during the noise 
treatment.

For three of the experimental groups, the birds 
generally occupied space further from the noise 
source (20-m radius from the speaker) while the 
traffic sounds were being broadcast compared with 
the period before the traffic sounds were broadcast. 
However, we observed the opposite shift in space- 
use in a fourth group, in which birds moved closer 
to the speaker while the traffic noise was being 
broadcast. Overall, we did not discern a consistent 
pattern in shifts of space-use in association with 
traffic noise (P = 0.940, Table 3).

Table 2. Output of linear models for analysis of change in 
weighted-degree from before to noise treatments.

Sum Sq df Mean Sq F P

Overall
Treatment 2.10 1 2.10 21.3 < 0.001
Trial 1.91 3 0.638 6.47 0.001
Treatment:Trial 3.07 3 1.02 10.4 < 0.001
Residuals 4.14 42 0.099
Between Group
Treatment 0.573 1 0.573 349.7 0.003
Trial 0.265 3 0.088 53.9 0.018
Treatment:Trial 0.379 3 0.126 77.1 0.013
Residuals 0.003 2 0.002
Within Group
Treatment 0.293 1 0.293 3.10 0.086
Trial 0.027 3 0.009 0.097 0.961
Treatment:Trial 2.86 3 0.952 10.1 < 0.001
Residuals 3.49 37 0.094

Figure 2. (a) Overall change in weighted-degree relative to traffic noise (n = 51, P < 0.001), (b) between-group change in 
weighted-degree relative to traffic noise (n = 10, P < 0.01), (c) within-group change in weighted-degree relative to traffic noise 
(n = 45, P = 0.08). The boxplots indicate the median of the data and ± quartiles. The whiskers denote the range of the data and 
open circles indicate outliers.
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Discussion

Contrary to our prediction that individual social 
connectivity (weighted-degree) would increase 
with noise due to more confined space-use, we 
observed an appreciable decrease in individual 
social connectivity for birds exposed to traffic 
noise (Table 2; Figure 2). In comparison, our refer
ence groups (groups that did not receive additional 
noise at the same time as the focal groups) did not 
demonstrate a comparable change in their social 
connectivity, indicating that our observed effects 
were related to our experimental noise introduction 
and not to other social changes over the course of 
the field season. The reduction in social connectiv
ity appeared to be driven by reduced between- 
group interactions (Table 2; Figure 2). We recog
nise that this sample size is small (i.e. we studied 
a relatively small number of groups of birds), but it 
is logistically difficult to have large sample sizes for 
many social network studies in field populations 
(Lantz and Karubian 2017). Despite our small sam
ple of groups, we feel we have reasonable statistical 
evidence to support our hypotheses from our four 
experimental trials in which we track the within- 
individual change in social behaviour in association 
with noise. We collected data using the same meth
ods across groups of birds, both reference and 
experimental, and therefore limited the influence 
of confounding changes in the birds and their 
environment with experimental presentations of 
traffic noise.

Despite the increased weighted-degree response 
to fire in this same species, which is thought to be 
a result of reduced habitat availability from burned 
grasslands (Lantz and Karubian 2017), our results 
suggest that traffic noise does not fragment avail
able habitat, but instead might degrade vocalisa
tions of birds within noise-affected areas. In 
fairywrens, vocalisations can serve for territory 
defence (Dowling and Webster 2013) and possible 
mate-guarding (Baldassarre et al. 2016). The impact 
of noise on reduced signal detection is well estab
lished (Pohl et al. 2009; Kleist et al. 2016) and 
therefore, we speculate that social connectivity 
decreased, rather than increased, due to this 

degradation of vocal signals of the noise-affected 
groups. Degradation of vocal signals would limit 
both the transmission of signals to neighbouring 
groups and the reception and accurate decoding 
of vocal signals from neighbouring groups to our 
targeted group.

A reduction of social connectivity can ultimately 
affect vital processes in many organisms. For example, 
in eels (Anguilla anguilla) increased familiarity with 
conspecifics decreases aggressive interactions (Geffroy 
et al. 2014). Of course, there is a large phylogenetic gap 
between eels and fairywrens, so we interpret that pre
vious study with suitable caution. Nevertheless, it is 
possible that the decline in between-group interac
tions that we observed in fairywrens exposed to traffic 
noise influenced the perception of familiarity among 
groups. Familiarity of neighbours in great tits (Parus 
major) was positively correlated with reproductive 
output, measured by both clutch size and likelihood 
of successfully fledging offspring (Grabowska-Zhang 
et al. 2012). Therefore, reduced familiarity with neigh
bouring groups of fairywrens could possibly have 
implications for reproductive success in the subse
quent breeding season. Furthermore, between-group 
interactions among fairywrens often are in the context 
of seeking extra-pair copulations (Rowley and Russell 
1990). Extra-pair paternity in fairywrens could be 
a mechanism for inbreeding avoidance (Tarvin et al. 
2005; Varian-Ramos and Webster 2012). Thus, we 
speculate that limiting these between-group interac
tions through noise could have implications for extra- 
pair paternity rates and genetic structure of fairywren 
populations, if the noise was applied chronically to the 
habitat occupied by these groups.

Reduced social connectivity could also decrease the 
likelihood of obtaining new resources. Great tits that 
are less social tend to be less bold explorers, and are 
less likely to find and acquire new resources (Snijders 
et al. 2014). Additionally, in three species of tits 
(family Paridae), closely associating individuals are 
more likely to transfer information about new food 
or habitat resources (Aplin et al. 2012), so those with 
higher weighted-degree will have more access to new 
resources. In our Red-backed Fairywren system, 
helper fairywrens tend to disperse their 2nd or 
3rd year to form their own breeding groups, so this 
decrease in weighted-degree could affect their ability 
to establish their own home range later in life.

Our results also revealed no consistent change in 
space-use with the introduction of noise. Three groups 
decreased their space-use in the noise treatment, while 
one group increased their space-use, indicating that 
these birds are not consistently displaced by noise 
(Table 3). Therefore, we tentatively rule out altered 
space-use as a mechanism for the observed social 
changes, and instead suggest follow-up studies to 

Table 3. Percent overlap (represented as a decimal) of utilisa
tion distribution within the 20 m radius noise zone for experi
mental groups, before and during noise introduction. Paired 
t-test revealed no statistically significant change in space-use 
due to noise treatment (t = 0.081, df = 3, P = 0.940).

Before Noise

Trial 1 0.16 0.13
Trial 2 0.19 0.45
Trial 3 0.23 0.11
Trial 4 0.22 0.08
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investigate alternative mechanisms, such as how 
degradation of vocal signals by noise affects between- 
group communication. For example, the role of duet
ting in Red-backed Fairywrens affects likelihood of 
extra-pair paternity (Baldassarre et al. 2016), and 
while the function of duetting remains up for debate, 
several hypotheses argue its role is involved in mate- 
guarding to prevent females from attracting neigh
bouring males (Sonnenschein and Reyer 1983) and 
in broadcasting territory (Osmun and Mennill 2011). 
Therefore, it is possible that the traffic noise masked 
the presence and location of experimental groups 
from neighbouring groups of birds by degrading 
their vocal signals, thus the observed decrease in 
between-group interactions.

With noise pollution, specifically traffic noise, 
becoming more widespread and intense with 
expanding urbanisation, this study details the possi
ble social consequences for Red-backed Fairywrens. 
Fairywrens are useful models in identifying potential 
vulnerabilities of anthropogenic pressures on passer
ines (Skroblin and Murphy 2013) and, therefore, 
these results inform how noise could affect sociality 
in similar songbirds. Reduction in social connectivity 
could affect many processes in a songbird popula
tion, from accessing resources to reproductive suc
cess. Traffic noise is the leading source of 
anthropogenic noise (Ouis 1999) and is continuing 
to expand its influence on natural ecosystems, it is 
therefore important to understand avian commu
nities will be affected to anticipate conservation 
needs.
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